Vercel's Generate SQL and Chart the Data

0:00:00

1. Intro   (0:01:03)

  • Introduces Nico, who works on the AI SDK for Vercel
  • Announces a new template for interacting with PostgreSQL databases
  • Briefly mentions the demo app at natural-language-for.app
  • 0:00:00

  • 1.1. Introduction and Purpose   (0:00:30)
  • Introduces speaker Nico from Vercel's AI SDK team
  • Announces new template for PostgreSQL database interaction
  • Mentions demo app location at natural-language-for.app
  • 0:00:30

  • 1.2. Dataset Overview   (0:00:33)
  • Describes the dataset as CB Insights' list of unicorn companies
  • Defines unicorn companies as valued over $1 billion
  • Mentions the dataset contains 12,248 rows
  • 0:01:03

    2. Demo   (0:02:41)

  • Demonstrates the app's functionality using suggested queries
  • Shows how the model generates SQL queries and charts
  • Highlights the feature to explain generated SQL queries
  • 0:01:03

  • 2.1. Query Generation and Visualization   (0:02:00)
  • Demonstrates using suggested queries in the app
  • Shows how the model generates SQL queries from natural language
  • Explains the process of running queries and generating charts
  • 0:03:03

  • 2.2. SQL Query Explanation Feature   (0:00:41)
  • Highlights the feature to explain generated SQL queries
  • Shows how the interface breaks down query components
  • Demonstrates the educational value of the explanation feature
  • 0:03:44

    3. Project Overview   (0:00:54)

  • Introduces the project structure and key components
  • Mentions the use of Next.js and server actions
  • Briefly describes the main directories and their contents
  • 0:03:44

  • 3.1. Project Structure   (0:02:00)
  • Describes the project as a Next.js application
  • Mentions the use of Shaden for components
  • Explains the use of server actions for backend functionality
  • 0:05:18

    4. Handle Submit   (0:01:59)

  • Explains the handle submit function in detail
  • Describes how the function processes user input
  • Shows the initial steps of query generation
  • 0:05:18

  • 4.1. Function Overview   (0:02:00)
  • Explains the purpose of the handle submit function
  • Describes how it processes user input or suggestions
  • Shows the initial steps of clearing existing data and setting states
  • 0:07:17

    5. Generate Object   (0:04:23)

  • Discusses the generate object function from the AI SDK
  • Explains the prompt engineering for SQL query generation
  • Highlights key aspects of the system prompt
  • 0:07:17

  • 5.1. Generate Object Function   (0:02:00)
  • Explains the use of generate object function from AI SDK
  • Discusses the choice of OpenAI GPT-4 model
  • Mentions the flexibility to use different models
  • 0:09:17

  • 5.2. Prompt Engineering   (0:02:23)
  • Discusses the importance of prompt engineering
  • Explains key aspects of the system prompt for SQL generation
  • Highlights constraints and guidelines given to the model
  • 0:11:40

    6. Active Query   (0:07:41)

  • Explains the process of running the generated SQL query
  • Discusses the generation of chart configurations
  • Describes the SQL query explanation feature
  • 0:11:40

  • 6.1. Running SQL Query   (0:02:00)
  • Explains the process of running the generated SQL query
  • Discusses safety checks to prevent malicious queries
  • Describes how results and columns are extracted
  • 0:13:40

  • 6.2. Chart Configuration Generation   (0:02:00)
  • Discusses the process of generating chart configurations
  • Explains the use of AI to create appropriate visualizations
  • Describes the structure of the chart configuration object
  • 0:15:40

  • 6.3. SQL Query Explanation   (0:03:41)
  • Describes the SQL query explanation feature
  • Explains the prompt engineering for query breakdown
  • Discusses the structure of the explanation output